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ABSTRACT -- The design, analysis, and demonstration of a digital-correlation microwave

polarimeter for use in earth remote sensing is presented. We begin with an analysis of three-

level digital correlation and develop the correlator transfer function and radiometric sensitivity.

A fifth-order polynomial regression is derived for inverting the digital correlation coefficient into

the analog statistic. In addition, the effects of quantizer threshold asymmetry and hysteresis are

discussed. A two-look unpolarized calibration scheme is developed for identifying correlation

offsets. The developed theory and calibration method are verified using a 10.7 GHz and a 37.0 GHz

polarimeter. The polarimeters are based upon 1-GS/s three-level digital correlators and measure

the first three Stokes parameters. Through experiment, the radiometric sensitivity is shown to

approach the theoretical as derived earlier in the paper and the two-look unpolarized calibration

method is successfully compared with results using a polarimetric scheme. Finally, sample data

from an aircraft experiment demonstrates that the polarimeter is highly-useful for ocean wind-

vector measurement.



I Introduction

Recent advances in the interpretation of polarimetric microwave thermal emission from the Earth's

oceans and atmosphere have prompted the study of new retrieval techniques for near-surface ocean

wind vectors and mesospheric temperature profiles [1]. These techniques are facilitated by a more

complete characterization of the polarization characteristics of the upwelling radiation field than

obtainable using conventional single- or dual-polarization radiometers. As an example of these

techniques, polarimetric measurements have been shown to greatly facilitate the retrieval of ocean

surface wind direction [2, 3].

The quantity used to fully describe the second-order statistics of the quasi-monochromatic

radiation field at a point in space is the Stokes vector. The elements of the modified Stokes vector,

in units of brightness temperature (Kelvins), are directly related to the following ensemble averages

of the incident transverse electric field components [4]:

(lEvi

Tv 2Im(E,E_)

where A is the wavelength, _/is the impedance of the medium, and k is Boltzmann's constant. Here,

Ea is the phasor amplitude for polarization (_ (= v or h) per unit solid angle and bandwidth. The

first two parameters, Tv and Th, are the intensity in the vertical and horizontal polarizations and

their sum is the total radiation intensity. The remaining two parameters contain information about

the polarization characteristics of the radiation field. Specifically, T_ indicates the degree and

sense of linear polarization and Tv of circular polarization. Partially polarized thermal radiation is

specified by nonzero T_ or Tv and by T, :_ Th.

The parameters Tv and T h can be measured using standard linearly-polarized total power

radiometers [5]. Detection of the third and fourth Stokes parameters, however, requires two ad-

ditional measurements to effectively perform the correlations in (1). The various types of polari-

metric radiometers fall into two basic categories: adding polarimeters (AP) and direct correlating

polarimeters (DCP). The adding polarimeter uses measurements of the brightness temperature of
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at leasttwo additionalpolarizationstatese.g.,45° slant-linearlypolarized(T45o)andeitherleft-

or fight-handcircularlypolarized(Ttor Tr). From the four measured brightness temperatures and

using the Stokes parameter rotational transformation [6], the third and fourth Stokes parameters

can be determined, e.g.:

(2)

(3)

The direct correlating polarimeter estimates Tu and Tv by cross-correlating the instanta-

neous voltage signals of the vertical and horizontal channels. The actual correlation can be per-

formed by either analog or digital multiplying circuitry. If the time-varying voltages v. (t) and

vh(t) are assumed to be stationary and ergodic [7], then the covariance estimate P_h is:

1 v (t)vh(t)dt (4)

where r is the integration time. Since the IF voltages are related to the incident field quantities by

the receiving antenna's effective area and the receiver's signal transfer characteristics, measuring

/_h is equivalent to measuring TLr:

= (5)

where _" = _ is the correlation coefficient and T,_,su_ are the system temperatures of the ra-
_tv_ h

diometers (assumed to be of the total power type) for polarizations a = v and h. A dual-channel

superheterodyne receiver with a coherent local oscillator (LO) may be required to downconvert

the RF band of interest to accommodate the bandwidth and/or operating frequency of the analog

multiplier or the digital correlator A/D converters. If the signals are downconverted in-phase, Tu is

estimated; however, if the receiver is single-sideband and the signals are downconverted in phase-

quadrature, then Tv is estimated. Direct correlation without down conversion is also possible with

the appropriate hardware.

Several mechanisms can contribute to calibration errors in (4) and (5). Antenna cross-

polarization mixing and receiver imbalances can cause mixing of all four Stokes parameters, the



amountof whichmustbeknown.Onemethodfor comprehensivecalibrationof thefirstthreemod-

ified Stokesparametersusesarotatingpolarizedcalibrationstandard[8]. Thepolarizedstandard

presentsto the receivera stronglypolarizedbutpreciselydeterminedradiationfield andallows

completedeterminationof thegainsandoffsetsfor thefirst threeStokesparameters.Calibration

of thefourthStokesparameterchannelcanbeaccomplishedbyinsertionof anappropriate90° shift

in theRFpathusing,e.g.,aquarterwaveplate[9]. Useof thepolarizedstandardin space,however,

requiresadditionalhardwarebeyondtheconventionalambientandcoldblackbodystandardsthat

arecommonlyused.

In theimplementationof(4) and(5) it isdesirabletodesignasystemthatrequiresaminimal

amountof calibrationhardware.Whileananalogcorrelatorcanbeusedto determineTu or Tv, its

response will generally require the in-situ identification of relatively large leakage gains 9u_ and

9Uh from T_ and Tn, viz.:

vu = 9u,,Tv + gunTh + guuTv + 9uvTv + ou (6)

as well as the offset term o_. While leakage gains can be minimized by proper tuning and balanc-

ing, elimination of long term drift in detection and video components - their root cause - can be

prohibitively expensive.

A solution to the above problem above of precise measurement of either Ttr or Tv can be

found through digital correlation. Here the radio-frequency (RF) or intermediate-frequency (IF)

signals are sampled at the Nyquist rate, the digital samples cross-correlated using fast multiplica-

tion circuitry, and the correlation integral (4) performed via digital accumulation. Provided that

the digitized signal contains no DC component and the A/D conversion is linear and unbiased, the

correlation coefficient/_ can be obtained without leakage or offset. A further advantage of using a

digital correlator with more than one bit (or two levels) of discretization is that in-situ calibration

can be performed using only conventional ambient and cold unpolarized views, for example, an

ambient blackbody target and cold space.

Digital correlation radiometry was first discussed by Weinreb [10] for use in autocorrela-
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tionspectrometersfor radioastronomy.As shownby Weinrebin autocorrelationspectroscopyof

Gaussiansignals,only asinglebit of quantization(i.e., two-levelA/D conversion)is requiredto

achieve_64% of thedetectionsensitivityof a perfectanalogcorrelatorsystem.As fastdigital

logicbecamemorewidelyavailablethesingle-bitsystemswerereplacedwith three-level(reduced

2-bit or 1.6-bit)systems.Thethree-levelcorrelatorcanobtainup to 81%of thedetectionsensi-

tivity of theanalogsystem[11]. Theavailabilityof discretehigh-speeddigital logichasallowed

spectrometersto operateoverwiderbandwidths,andbothsingle-bitandtwo-bit correlatorshave

nowbeenimplementedatclock-ratesashighas2GS/s(e.g.,[12-16]).

Inthispaperwepresentthefirstdemonstrationofa polarimetricdigitalradiometerfor earth

remotesensing.Becauseof therelativelywidebandwidthsrequiredfor earthremotesensingappli-

cations(typicallytensto thousandsof MHz),thedigitalcorrelatorhasnotbeenconsideredfor use

in spaceuntil recently.Withtheadventof high-speedradiation-hardeneddigitallogic,bandwidths

of hundredsof MHz havenowbecomedetectableusingsensitive,shortintegration-time,digital

correlatingpolarimeters.Theblockdiagramof agenericdigital correlatingpolarimeteris shown

in Figure1.Themajorcomponentsarea(i) dual-polarizedantenna,(ii) asuperheterodynephase-

coherentdual-channelreceiver,and(iii) a three-leveldigitalcross-correlator).Webeginin Section

II with a descriptionof digital correlationradiometryanddiscussin SectionIII an investigation

of systematicerrorsalongwith designimplications.A noveltwo-lookcalibrationof thecorrela-

tion channelisdiscussedin SectionIV. Theresultsobtainedfromanairborne1.6-bitX-bandand

Ka-band1GS/sdigitalpolarimetricradiometerarereportedin SectionV, thusdemonstratingthe

ability to properlycalibrateandsuccessfullyoperateadigital polarimetricradiometer.

II Digital Correlation Polarimeter

The digital direct-correlating polarimeter has as its main distinguishing component a zero-lag dig-

ital cross-correlator. The digital correlator is composed of three sections: a pair of A/D converters,

a digital multiplier, and accumulators. To fully understand the correlator operation, it is necessary

to examine the relationship between the input signal statistics and the accumulator outputs. These



relationshipsalsoprovideameasureof thedigital correlatorsensitivity.

A Mean Statistics

The input signals to a correlator, va (t) and vb (t), are modeled as jointly-Gaussian stationary random

processes with root mean square (RMS) voltages a_, and avb and correlation coefficient p = ._nzz_.
av a O'v b

If the processes are sampled with period T at or below their Nyquist rate, then the sample sequences

consist of independently and identically distributed pairs with the following joint Gaussian proba-

bility density function (pdf):

y(v., vb;p) = exp \a_ ] 2P_._ b + \_b ] (7)

The three-level quantization performed on the input signals by the A/D converter can be modeled

by a nonlinear transfer function:

10 if V )" Vth a
h(v) = 1 ifv < --Vtho

otherwise

(8)

where the quantities z_ZVtha are the threshold levels of the A/D converters (see also Figure 2), with

the subscript t_ denoting either channel a or b. For typical CMOS or ECL logic, Vtha ,_ 0.05 to

0.50 volts, therefore, the necessary microwave signal power can range from -12 to +8 dBm in a

standard 50 f_ system.

The outputs of the quantizers form a new pair of jointly-random processes denoted h(v,(nT))

and h(vb(nT)) where sample n is taken at time nT. The second-order statistics of these sampled

and quantized processes are the digital variances and covariance and are nonlinearly related to

the first three Stokes parameters. For a measured sequence of N samples, the estimated digital

^5 and ÷ab, are:variances and covariance, denoted s a

N
^5 1

so= h(vo( T))5
n=l

(9)

N
1

i'ab = -_ E h(va(nT))h(vb(nT)) (10)



Thesethreestatisticalparametersaremeasuredby accumulationof theoutputs of a simple digital

circuit such as shown in Figure 3.

The statistics of s,_^2,,_, and r_b and their relationship to Ta, Tb, and Tu are obtained by

integrating the right-hand sides of (9) and (10) against the pdf (7). The expected value of the

digital variance is

= 2[1- (11)

where 0,_ =" vth,_ /a,,,, and

1 f xO(x)- _ e-t2/2dt
oo

(12)

is the normal cumulative distribution function. Figure 4 is a plot showing the relationship between

the digital variance and RMS input voltage at a fixed threshold voltage. As will be shown in section

B, for maximum sensitivity in Tv the value of 0,_ should be close to 0.61. Inverting (11) yields a

simple estimate for the signal standard deviation for a measured digital signal variance:

t_,_= O-1 (1 (_)) (13)

or, in terms of antenna brightness temperatures:

 AN ,o-   o/no
k B G ,_ TrtEC,,_

(14)
V2ha -2

-RokBG_[O-I( 1 (s2))]--T, Ec, o

where Ro is the system impedance, B is the bandwidth, Go is the system gain, and TaEc,_ is

the receiver noise temperature. In general, the parameters (__kl_a,, } and TREC,,_ are slowly time

varying and represent system gains and offsets that must be identified via periodic calibration.

The relationship between the input correlation coefficient p and the expected value of the

digital covariance rab is similarly straightforward and can be obtained by integrating the right-

hand side of (10) against the joint pdf over two dimensions. The problem can be reduced, however,

to an integration over one-dimension using Price's theorem [17, 18]. Price's theorem relates the
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covarianceof theinputsignalsto thedigitalcorrelationcoefficient:

OR_o_ \ dr. dVb /

= ([_(vo+ vth°)+ _(v°- Vtho)][_(vb+ v,_) + _(vb- v_._)l)

= f(Vtho,Vthb;P) + f(Vth.,--Vthb;P) + f(--Vth.,Vthb;P) + f(--Vth.,--Vthb;P) (15)

= f(avoOa, avbOb; P) + f(--O'v.Oa, O'vbOb; P) +

f (O'va Oa, --O'vb Ob; p) -_ f (--trv_ Oa, --avb Ob;p)

where J is the Dirac impulse function. The input covariance can be related to the input correlation

coefficient using the chain rule of differentiation:

Or_b Orab OP_°_b Or_b

Op - OR,,.Vb Op = cr_ a,b oir_°_b (16)

Thus, the digital correlation coefficient is a one-dimensional integral of the pdf over p:

/0'rob=O.ooo_ [f(Ov°Oo,o._Ob,#)+f(o.oOo,--o._Ob,p')+

f(--Crv. Oa, avnOb,p ') + f(--_rv.Oa,--OvbOb, pt)] dp'. (17)

In practice 0_ and Ob are taken to be 0, and Ob from (13). The relationship between the input

correlation coefficient and the digital covariance is plotted in Figure 5 for a fixed threshold level

0_ = 0.61.

For a given r_b, the correlation estimate t5 is determined by nonlinear inversion of (17).

The inversion technique must be carefully chosen so that systematic errors arising from the ap-

proximation are not larger than the statistical uncertainty of the estimate. This requirement is quite

stringent. For example, from (5), a radiometer with a system temperature of Tsy8 = 500 K and a

noise requirement of ATrms = 0.1 K for the third or fourth Stokes parameter requires a measure-

ment ofp with absolute error less than 0.1K/(2 • 500K) = 1 x 10 -4. The two existing inversion

techniques for three-level correlators are based upon power series inversions of either the bivari-

ate normal integral [19] or the one dimensional integral (17) [20]. In the former method [19] the

inversion was derived for the cross-correlator, while for the latter method it was derived for the



auto-correlator.Both sharesimilarconvergencecharacteristics,e.g.,third-orderexpansionsare

requiredto obtain0.1%accuracyor anabsoluteerrorof 10-4 for IPl< 0.6. Thelattertechnique,

however,ismathematicallysimplerandpermitsananalysisof theeffectsof systemnonidealities

(consideredin sectionA). Sincethisexpressionwasoriginallyderivedfor theautocorrelator,a

newandmoreaccurateexpressiontailoredto thecross-correlatoris presentedhere(thederivation

is presentedin AppendixA). Firsttheintegrandof (17)is approximatedby aTaylorseriesabout

p' = 0. Next, the series is integrated to obtain:

rab=--exp -- 0_+0 x
71"

1
[p+ (0.- 1) - i)pa+

1 (3 - 60_ + 04,_)(3 - 60_ + 04) pS] + O(pT).120 (18)

Finally, a fifth-order power series inversion [21, (3.6.25)] is carried out on (18). The resulting

estimate maps _,b into 15with absolute error of ,_ 10 -5 for ]p] < 0.5 and normalized threshold

levels 0,, Ob of 0.61 + 10%:

1 ca=3 if3c_ c5
= --÷ab _"-_b + ] -5Cl _, c_ _ r"b' (19)

where

Cl = -- exp - (0_ + 0
7r

ca= _exp -_(0_+0_) (0.2-1) (0_-1) (20)

c5= _exp - (0a2+0_) (3--60a 2+04 ) (3-60_+0g)

Acceptable inversion errors for Earth-science polarimetry are attainable using this fifth-order power

series.

B Sensitivity

A radiometer's fundamental sensitivity is limited by the available bandwidth, observation time, and

receiver noise temperature. The radiometric sensitivity of a polarization correlating radiometer is:

_ o'_

ATu,rm_ 0_'/0Tv ' (21)
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wherea_- is the standard deviation of the estimate _. For continuous (analog) correlation using N

independent samples and small values ofp it can be shown that limp__0 a_- = 1/x,/-N [11]. Thus,

using (5) and (21) the fundamental sensitivity for analog correlation is:

2 v/Tv'susTh'sus (22)
ATv, rm8 = x/N

In the case of a digital correlator, the quantization noise of the A/D converter increases ATu,,.,,r,_

above this value, the amount of which is a function of both the number of A/D converter levels and

the threshold voltages. Using a digital correlator we have:

m Tu'rrns O_ab / O_U "

(23)

For the three level system with balanced channels (0a = Ob = 0), the sensitivity for vanishingly

small correlation is (see Appendix A):

lim ATu,_m_ = 27r [1 - ¢(0)] e°2 _/T'_'_usTh'_u_ (24)
p--}0

The impact of quantization noise can be minimized by proper selection of the threshold voltages

Vth,_. The optimal value of 0 (determined numerically) is 0.61 with a corresponding sensitivity of:

ATu,_, = 2.47 v/Tv"u'Th"u" (25)

Comparing this expression to (22) we find that the 1.6-bit digital correlator achieves 81% of the

sensitivity available from an ideal analog correlator.

The total power channels are useful for normalized threshold level estimation as well as

measurements of the first two Stokes parameters. The sensitivity of a total power channel can be

calculated in a similar fashion by

aM (26)
AT,_,_,- 0(_)/0"F_

With the threshold levels 0a = 0o = 0.61 (i.e., set for optimal cross-correlator sensitivity), the total

power channels have a fundamental sensitivity of (see appendix B)

AT,_,rm8 = 2.20 TS_'''_ (27)
vW
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Theideal(analog)totalpowerradiometerhasasensitivityof Tsus/x/N. Thus, a three-level digital

total power radiometer can achieve 41% of the sensitivity of an ideal analog radiometer when

the threshold voltages are optimized for the cross-correlation channel. It is noted that in (27)

the optimal sensitivity for the total power channels is not used because the threshold voltages

were chosen to optimize the cross-correlation channel. In otherwords, the threshold level value of

0.61 is the optimum value for small cross correlations; however, this value is not optimal for the

total power channels. This choice is acceptable, however, because in the polarization correlating

radiometer the total power channels are primarily used to measure the relative threshold level

values. If the thresholds were to be set for optimum total-power sensitivity, the digital total-power

radiometer could 78% of the sensitivity of the analog radiometer with 0,_ = 1.58.

III Systematic Errors

Two sources of systematic errors in a polarimetric radiometer are analyzed in this section: (1) errors

caused by threshold asymmetries in the A/D converters (sampler offsets) and (2) other correlator

gain attenuating sources: A/D hysteresis, timing skew, and phase differences. Design suggestions

to mitigate each error are discussed.

A Sampler Offsets

Threshold level asymmetries in the correlator A/D converters produce systematic errors in the

variance and correlation measurements. When extreme accuracy is not required, the effects of

these relatively small biases can be neglected. For high-accuracy applications, such as found in

microwave polarimetry for wind vector measurement, however, asymmetric threshold levels cause

attenuation and offset variations that require compensation. We present here an analysis illustrating

the second-order behavior of bias effects along with a simple analytical correction which can be

incorporated into an in-situ radiometer calibration algorithm. The three-level A/D converter with

a transfer function given by (8) typically exhibits small DC offset voltages vr,,, which effectively

cause the threshold levels to be asymmetric about ground potential. We define the normalized
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thresholdasymmetryto be_a _ v6,,/av_. Incorporating this offset into the transfer function we

now have (see Figure 6):

{_ ifv > Vth a

h(v - v_,) = 1 ifv < -vth,, (28)

otherwise

Relations (9) and (10) can now be recomputed to reveal the effects of threshold offsets.

A.1 Correlation channel

The digital correlation coefficient (17) including offsets becomes:

rob= r.blo-_o+Ovo_vb [/(OVo(0a+_.),O_b(0b +_b),P') + f(_..o(Oo+_o),Ov,(--Ob+_b),d)+

f(a_.(-Oa +_o),ao_(Ob+_b),P')+ Y(OVo(--Oo+6°),Ov_(--Ob+_b),d)]dd. (29)

Equation 29 can be considered equivalent to (17) but with small gain and offset perturbations of

order 6_ and _b- We show here that the gain error is negligible if the input correlation coefficient is

small. In contrast, the offset error is found to be an order of magnitude larger than the gain error.

This correlation offset, however, is parameterized in terms of the threshold level offset and may be

compensated via calibration using two unpolarized standards.

The correlator offset error arises from the constant of integration rabla=o in (29). This

constant was not explicitly shown in (17) because ideally it is zero. The constant can be evaluated

by taking the expected value of (10) with p = 0 and using the modified definition of h(v - v6,,) in

(28):

Tobit=0= (h(vo - V_o)h(vb-- v6_)>l_:0 (30)

Clearly, when either threshold level is ideal (i.e., _,_ = 0) the above term vanishes. A shift in both

threshold levels, however, causes the offset error to become non-zero, the expected value of which

can be separated into a product of two expected values since v,_ and vb are statistically independent

when p = 0. The resulting correlation offset is:

rablo=o= [1--_b(--O,_ +Sa)--_(O, +Sa)][1--_(--Ob +Jb)--_(Ob +Sb)] (31)
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Assuming6a and 65 are small allows (3 1) to be approximated using Taylor series expansions about

+0. and +0b. The first term in the product is:

1 - _(-0a + 6a) -- _(0. + 6a) = 1 -- _(0a) + _V_e 2 ara -- _ e-½°_Oar] + 0 (6])

-

=-V +o
(32)

where the 6_ terms cancel to leave an odd-valued function. The linear behavior of (32) makes the

threshold asymmetry a significant source of error. The constant of integration in (29) is the product

of two such terms:

where

(33)

(34)

ZX 6a 6b

7re -- 0,_Ob (35)

is the normalized threshold offset product. The threshold asymmetries thus affect the digital corre-

lation offset by an amount proportional to the normalized offset product. Expressed using voltages:

7r,_= ----v'_"v'% (36)
Vtha Vthb

The above product is generally a slowly time varying hardware constant, but as will be shown in

section IV, it can be estimated using a conventional two-look unpolarized calibration.

The correlator gain perturbation is found by expanding the integrand of (29) in a three-

dimensional power series in p', 6_ and 6b, then integrating the resulting expansion with respect to

p'. The algebra involved (see Appendix C) is cumbersome, although the result can be expressed as

a sum of two series. The first series rabl&=tb=o is the ideal relationship between p and r given by

13



(17).Thesecondseriesisanerror series 5rab (Sa, 5b, p) caused by nonzero threshold offsets 5,_ and

5b. Collecting these terms we have:

r_b = rabl.:o + r_16.=_b= o +-Tr exp - _ (0_ + 0 ×
1

-1[(60a26 +0] + 3)(1-0_)5_ + (1-0a 2) (60_ +0_ + 3) 5_]p 3] + O (p4,53 )

The above series is truncated at O(p 4) and 0(53). Assuming that the nominal threshold levels are

equal to the optimal value (0,_ = 0.61) the error series becomes:

5ro_(5,,Sb, p) _ -0.3140 (5_ +5_) p+O.O1645,Sbp 2 +--0.5621 (Sa_ +5_) pa (38)

The error series is a sum of components that are 0(52p), O(6ZpZ), and O(o_pa), respectively.

To determine which components of the series are significant we assume that p = 0.1 and

5,_ = 58 = 5 for which the absolute values of the three components are

I-0.3140 (5_ + 5_) Pi "_ 0"04452

]O.O1645aSbp21 _ 0.0001652

1-o.5621 + 55.3J 0.0007952

To render these error terms insignificant, the quantity 52 must be sufficiently small. Using the

previous criterion that all errors in p of magnitude _ 10 -s are negligible, the normalized threshold

offsets should be no larger than 10 -2, that is, v_,, _< 10-2av,,. This is readily attainable using

precision electronics for av,, "_ 0.5 V. If threshold offsets are not small enough, then the offsets

should at least be controlled to render insignificant the higher-order terms (e.g., p2, p3... ), in

which case only a correctable gain error occurs. For this latter case, it is sufficient that v6, _<

10-1av,_ to cause the magnitude of the p2 and pa terms to be less than 10 -5. The remaining error

is linear in p and can be modeled as an effective change in the correlator gain:

2 [ _ ] ( 1 2 ( 10_)5_])p+O(p2,5_ )r n=r.nl.=o+-exp - 1-_[(1-0_)5.+ -

(39)

14



Notethattheidealcorrelatoroutputr_b16.=6_=o is implicitly included in (39). Typically the thresh-

old offsets are small enough so that the gain perturbation is a only few percent.

A.2 Total power channel

The effect of threshold asymmetry on the total power channels is a perturbed system gain and offset

along with a residual nonlinearity that we show to be negligible. Consider the expected value of

the total power output:

(_) = 69(-0_ + _a) + 1 - g# (0n + _a) (40)

This expression is a simple extension of (1 1) but includes the threshold asymmetry. The above can

be approximated in 6,_ as

1
V_e-°_/20,_6_ + 0 (_) (41)(_-_) = 69(-0,_) + 1 - 69(0,_) +

Similar to the correlation channel, the expected value of the total power channel is a sum of the

ideal output and an additional error series. We can now show that part of the error series can be

combined with the ideal output to compute a modified system gain and offset, with the residual

(nonlinear) component being insignificant. If all functions of 0o are approximated by a power

1 [_369(-oo)+1-69(oo)=1- oo+ -6V_oo+ o (o_)

e -°_/2 = 1 - _0_ + 0 (04)

series expansion

then (40) can be written

[ 7 ] ](s_)= 1- °'_+6V_ _+°(°_) +2 °_-20a+O(O_) 62+°(_4_)

=1- 1-_ Oa+_ 1-- _ Oa+O(O_,_t)

= +' +o _ _0_+o(1-_a2) [1--V_0a _V_2-003 (0_)] +_,_-_ 2- (_4a)

= - <o>,o=O+ - + (_)
6VTr

(42)

(43)

(44)
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1 2
There is a gain term affecting the total power channel output by a factor of (1 - _6a) and an offset

1 2
of approximately _6_. This additional system gain and offset is easily identified via a standard

two-look calibration. The nonlinear residual is

( 41

Assuming the optimal value for the threshold levels (0,_ = 0.6D, the above residual is found to be

,,_ 10-_. If 6,_ <_ 10 -2, then the nonlinear residual term becomes ,-_ 10 -6, which is insignificant

for either total power or threshold estimation.

B Other correlator gain attenuating sources

Analog-to-digital converter hysteresis acts to reduce the correlation output by an amount propor-

tional to the magnitude of the hysteresis. This effect has been modeled by D'Addario, et al. [19]

assuming a uniformly distributed region of uncertainty about the nominal threshold. However,

this statistical model underestimates the attenuation effect because the hysteresis is treated as a

process that is statistically independent from the signal. Rather hysteresis is a nonstationary pro-

cess in which the current threshold level is dependent upon the previous value of the input signal.

To make a more accurate assessment of hysteresis a Monte-Carlo simulator was constructed to

demonstrate the effect on the gain of the correlation channel. The simulator is based upon an A/D

converter transfer function of the form:

1 ifv(nT) > vth,, + Vhus,_ AND h[v((n - 1)T)] -_ 1,

1 ifv(nT) > vth,, - Vhus,,_ AND h[v((n - 1)T)] = 1,

h(v(nT; vhys,,_) = -1 if v(nT) < --Vth_ + Vhus,,_ AND h[v((n - 1)T)] = -1, (46)

-1 ifv(nT) < --Vth,_ -- Vhus,c, AND h[v((n - 1)T)] 7_ -1,

0 otherwise.

where Vnys,,_ is the hysteresis voltage. The transfer function is graphically illustrated in Figure

7. Input correlation coefficients in the range -0.1 < p < 0.1 were tested with varying levels

of hysteresis using 214 Monte-Carlo samples for each case. In Figure 8, the correlator output r_b

is plotted for values of hysteresis in the range 0 < Vhy_,,_/av_ <_ 0.333. The computed relative

attenuation on rob due to the hysteresis is practically independent of p over this range. The results
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of thestatisticalmodelof [ 19] for thesameconditionsarealsoplotted.Comparedto theMonte-

Carlosimulations,thestatisticalmodelunderestimatestheattenuationeffectbyafactorof ,--,10 at

vh_s,_/avo = 0.1.

The results suggest that hysteresis has a moderate effect on the correlator output. A re-

duction in correlator gain of 1% is caused by a hysteresis voltage equal to 2% of the RMS signal

voltage. For a 0 dBm signal into 50 [2 this reduction would be caused by a hysteresis voltage of

only 4.4 mV. Appropriate care should be taken in the design of the A/D converter circuitry. Alter-

natively, in-situ correction could me made using a polarimetric calibration system or with precise

knowledge of the hysteresis levels.

Timing skew between the A/D converters or (equivalently) additional delay in one of the

RF or IF paths has a similar effect of reducing the correlator output. The baseband signals at the

correlator input can be modeled by

va(t) = v°(t) + v_(t) (47)

vdt) = v°(t - At) + v_(t- zXt) (48)

where v°(t), v°(t), and v_(t) are mutually uncorrelated and wide-sense stationary, and At is an

additional path delay or timing skew. If vc (t) is bandlimited then the cross-correlation function is:

fQ, vb(At) = pa_, avb sinc(27rBAt) (49)

where B is the bandwidth or bandlimiting cutoff frequency of v_(t), and the function sinc(z)

sinx Thus, timing skew will reduce the measured correlation coefficient. For example, a 1%
ll:

reduction would be caused by At = 0.039B -1. For a 500 MHz bandwidth, this corresponds to

At = 78 ps or _ 24 mm of free-space IF path delay.

Phase differences between the two signals will also cause an attenuation of the measured

correlation coefficient. Phase differences can be caused by LO distribution phase errors and phase

imbalances between amplifiers, filters, waveguides, and other transmission paths of the respective

signals. If the phase error is denoted AT, then the cross-correlation at the correlator inputs is

Rv._b = pa_° avb cos(AT) (50)
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Forexample,a 10° or 20 ° phase difference will cause a 1.5% or 6% reduction in the correlation

coefficient, respectively.

IV Calibration

Calibration of a digital polarimeter entails the periodic identification of slowly time-varying system

hardware parameters. For the total power channels, these constants are the system gain and offset.

For the polarization correlating channel, the threshold-offset product (36) in section A. 1 as well

as any other additive offsets (such as those originating from correlated LO noise) must be identi-

fied. As shown below, these parameters can be estimated using the simple hot and cold views of

unpolarized blackbody standards as obtained during conventional total power channel calibration.

A Total power channel calibration

Identification of the gain and offset of the total power channels in (14) allow an antenna temperature

estimate to be made. The output of the total power channel is related to the antenna temperature

estimate by:

where the left hand side is the linearized digital variance, 9,_ is the radiometer system gain in K -x,

and the receiver temperature TREC,,_ is the system offset.

The gain and offset can be estimated if the radiometer is presented two known antenna

temperatures of differing values. The digital variance measurements corresponding to the hot and

cold calibration temperatures, denoted ,-thor.,CAL and ,wolalCAL, are:

-2

-2

_a AL "_- EC,_ (52)

(53)
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This system is easily solved for _ and Tn_c,o:

gc_ "_ Thot rFcold
CAL -- "" CAL

-2\'1

TREC,a _ -2

(1)-1 (1 - _ hot_q j

(54)

(55)

With the two system parameters properly identified, the estimated antenna temperature as mea-

sured by the total power radiometer is

TANT, a=I[cb-I(1--_)]-2--TREC,,_ (56,

B Correlator channel calibration

Estimation of the digital correlator system parameters can be achieved using the same hot and cold

calibration looks required for the calibration of the total-power channels. There are two unknown

calibration offsets. The first is the correlation bias P0, caused by correlated LO thermal noise. The

second is the digital correlation offset rablp=0, which is caused by threshold level asymmetry and

is subtracted from the digital correlator output prior to conversion into the continuous correlation

coefficient. The expected value of the correlator output given an unpolarized brightness field at the

antenna input (i.e., Tu = 0) is

r_Lv_= o = co_r_ + clpo + c3p3o+ c_pSo

where

 0 0 ex.

(57)

(58)

cl, c3, and c_ are given by (20), and 7r6 is the offset product (36). The fifth-order term csp_ can be

ignored if p0 < 0.1, which is usually the case when Tu = 0.

The two calibration targets provide unpolarized emission at two different radiation inten-

sities. Sequential views of the hot and cold targets provide the digital correlation measurements
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r_b°t and _ta for the hot and cold looks, respectively. Using these two measurements a system of

equations can be formed:

r'_abot hot_ hot^ ch3Ot_o= Co 7r6cl P0 + (59)

_td = c_old_ac_Otd'_o+ c_,ld _ (60)

The coefficients _ot and c_,'ad are computed by using the relative threshold values O_ t and O_ a,

respectively. Using only a third-order expansion in/90 allows the above system to be solved ana-

lytically. An estimate of the threshold-offset product can be found by:

__ _ cF_d'A_ c_O_?_
_ 6 = `tab

c_Old (61 )

and an estimate of the correlation bias is a root of the following cubic:

( Cl_"°t \ ( cl_n°t \ ( Cl_"°t \--_°t'3r-C'_'f'ab )'Jr- C--_ 1 ,]P0+ C--_3 )_=0 (62)

The solution of a cubic equation is given in [21, (3.8.2)]. For this particular cubic there is typically

one real root and a pair of complex conjugate roots. The real root is the desired solution for P0 and

1 1

= + +
is given by:

COo°talC1 )

k_a

(63)

where q and r are defined as

(64)

1 (rAhab°t - _hot_d \
r= _°_°r_b ) (65)

2 (Ct_3ot __-cold'_- _o,_3 )

Care must be taken in choosing the proper branch of the cube roots; otherwise the solution is

straightforward.

Once _6 and P0 have been determined, the correlation coefficient estimate _ is computed as

follows:

[l (_ab--_ablp=O) -c-z_c_ (-_ -- _ab]p=O) 3 {3C32+\ C[ C6cS) (_b-r'ab]p=°)5] -'fi° (66)_=
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wheretheestimateddigitalcorrelationbiasiscomputedasin (A.1):

rab[p=o = _ OaObexp --2 (02 + 0

An estimate of the third Stokes parameter is subsequently computed using (5):

Tu = 2P'V/Tv,susTh,sus

V Hardware Demonstration

(67)

(68)

The digital correlating polarimeter concept was demonstrated using the Polarimetric Scanning

Radiometer/Digital (PSR/D) airborne imaging instrument [2, 22, 23]. The PSR/D is the first multi-

channel tri-polarimetric (first three Stokes parameters) high-resolution imaging radiometer for

aircraft-based studies of land and ocean emission (Figure 9). The radiometer operated success-

fully in a conical scanning configuration to measure the first three Stokes parameters over the

wind-driven ocean at 10.7 GHz (X-band) and 37.0 GHz (Ka-band) [3]. In-situ calibration was

accomplished using unpolarized hot and ambient temperature blackbody calibration targets and

verified using a ground-based polarimetric calibration target [8].

A Hardware

The 10.7 GHz radiometer was a superheterodyne single-sideband (SSB) system with a low noise

amplifier (LNA) front-end on each channel. The 37.0 GHz radiometer was a superheterodyne

double-sideband (DSB) system with mixer front-ends. The receiver topologies were similar to Fig-

ure 1, with common local oscillators providing coherent downconversion of the two orthogonally-

polarized channels. Sufficient RF and IF gain (_100 dB) was provided to amplify the baseband

signals to a level appropriate for three-level A/D conversion. A separate analog total-power detec-

tion circuit, with square law detectors and video amplifiers, was included. This redundant circuitry

provided independent measurements of the first two Stokes parameters.

The IF signals of the 10.7 GHz system were fed to a 1 GS/s emitter-coupled logic (ECL)

digital correlator capable of measuring the variances and correlation coefficient of two 500 MHz
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orthogonally-polarizedbasebandrandomsignals(seeFigure10).The37.0GHz systemprovided

a 1000MHzwideIF band,thus,eachIFbandwassubdividedinto two500MHz subbands.These

signals were fed to two correlators. By such frequency demultiplexing the entire available band-

width of the 37.0 GHz radiometer was utilized. Each correlator comprised three functional blocks:

the A/D converters, the multipliers, and the accumulators. The high-speed A/D converters were

constructed using dual-window comparators yielding three levels of quantization at a 1 GS/s rate.

The comparator threshold levels were dynamically adjusted to track slowly-varying drifts in IF

signal power. Threshold level adjustment using eight-bit D/A converters provided (for Gaussian

signals) a 48 dB A/D converter input dynamic range. The operating dynamic range was limited to

,-_30 dB, however, by setting a minimum allowable threshold level ensured a good signal-to-noise

ratio. The typical threshold level was ,-.,0.3 V.

Estimates of second-order digital signal statistics were made by squaring and cross-multiplying

the A/D converter outputs, then accumulating using digital counters. The total power, or variance,

of an individual channel was measured by counting the number of times the input signal exceeded

either the positive or negative threshold levels as in (9). The correlation coefficient was similarly

determined by separately counting the number of positive and negative correlation counts. A total

of eight AND/NAND gates composed the entire three-level multiplier circuit. The outputs of the

digital multiplier were accumulated in four 24-bit counters providing 16.8 ms of integration time.

The initial 1-Gbit multiplier outputs were prescaled using high-speed 8-bit ECL ripple counters.

The system clock was distributed differentially to the counters using 50 f_ odd-mode coupled mi-

crostrip lines. The high-speed ECL signals exhibit transition times shorter than 250 ps; therefore,

the digital signals have spectral content >4 GHz. On-chip and interconnect propagation delays

within the multiplier circuit were compensated with clock delays generated by programmable de-

lay chips. To save power, the output from these counters were carried to 16-bit TTL counters. The

most-significant 16 bits were buffered and read by computer. The circuit was fabricated on six-

layer G 10 fiberglass circuit board. Microstrip interconnects were placed on the outer two layers of

1/2-oz copper and power was distributed via the internal layers of 2-oz copper.
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Redundantanalogtotal-powerchannelswereimplementedin parallelwith thedigital ra-

diometers.ThesameIF signalsfedto thedigitalcorrelatorswerecoupledto square-lawdetectors

at ,-_-23 dBm power level. Video amplifiers following the square-law detectors used integration

times of 8 msec. The video amplifier output ranged from 0-10 V and was sampled by a 12-bit A/D

converter. An analog offset was added to the video amplifier output to maintain the signal level

within the operating voltage range of the A/D.

B Calibration

The unpolarized hot and ambient method of Section IV was used to identify the correlation offset

and the threshold-offset product system parameters. Microwave foam absorber in ambient and

liquid nitrogen conditions provided unpolarized radiation fields. The estimated system parameters

and the radiometric sensitivities of the Tv channels are presented in Table 1. The radiometer sensi-

tivities were measured by computing the standard deviation of 100 calibrated measurements while

staring at an ambient temperature absorber. The resulting measured sensitivities are 1.03-1.29

times the fundamental limits stated in (25). The increased noise is attributed to RF and IF ampli-

fier gain fluctuations, non-optimal selection of threshold levels due to hystersis, and threshold-level

random noise.

To verify the effectiveness of the unpolarized two-look technique for calibrating the Tv

channel, a polarimetric calibration similar to that described in [8] was performed. The digitally-

estimated third Stokes parameter :Tu, as given in Section IV, can be related to an incident polarized

field by the following:

Tu = 2(P_v/T, vs,vTsus,h = gv,,Tv + guhTh + guuTu + ov (69)

where the gains 9uu, 9u,,, and 9Vh and offset ou are unidentified system parameters that might have

been left uncorrected by the two-look non-polarized calibration procedure. Assuming that P0 and

_r_ completely calibrate the third Stokes parameter channel, then 9uu = 1 and 9uv = gUh = OU = 0

(the gain terms are dimensionless and ov is in Kelvins). By comparing measurements of Tu with
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anexpectedpolarizedemissionvector[Tv, Th, Tu] T generated by a polarized calibration target,

the residual gain and offset terms can be checked.

The polarized calibration target included an ambient load, a liquid nitrogen load, and a

polarizing grid. The cold load was constructed by immersing a 56 cm x 56 cm square of the

convoluted foam absorber in liquid nitrogen. The liquid nitrogen bath covered the absorber tips by

at least 0.5 cm to ensure temperature uniformity. The ambient load was shrouded in a styrofoam

jacket. The temperature difference between the targets was Thor -- Tcoltt _ 210 K. The polarized

target was mounted on a turntable that provided rotation about the feedhorn axis. The rotational

position was measured using an optical encoder with 0.25 ° precision.

The details of the polarimetric calibration procedure are documented in [8]. Initially, the

radiometer antenna was aligned with the polarized target such that the incident Stokes field was

T_ = Tt, Th = T2 and Tu -- 0. Measurements were made while slowly rotating the target

over an angular range of ,-_420 °. An additional piece of absorber at ambient temperature was

used for an unpolarized look. A total of 600 radiometer samples were recorded and averaged into

2 ° bins, resulting in 180 points for a full 360 ° rotation with _28 ms integration time per point

(ATnMS _ 0.4 K). Using the calibration parameters found with the two-look unpolarized method,

the output of the digital correlator was converted into calibrated values of Tu(ai) (i = 1... n)

for the different angles c_i and Tu(UP) for the unpolarized look. The measurement vectors and

the columns of the observation matrices for both 10.7 and 37.0 GHz are plotted in Figure 11. By

visual inspection, T, and Th mixing into :_tr appears to be nonexistent, but the correlator output is

attenuated N25% at 37 GHz and ,-_70% at 10.7 GHz compared to Tu.

Using these data, the gains and offsets for the 10.7 and 37.0 GHz Tu channels were cal-

culated according to the methods in [8] and presented in Table 2. First notable are the small

(N0.1-0.05%) 9uv and gUh polarization-mixing gain terms. These negligible values are a direct

result of using the digital correlator versus a polarization adding or analog correlation design.

Second, the offsets ou are small (-0.05 K and 0.44 K), corresponding to correlation coefficient

offsets P0 "_ 10-4-10 -5. Recall, this level of offset was the design goal setforth for systematic
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errorsdescribedSectionIII. Thenegligiblevaluesof guy, gUh, and Ou demonstrate the successful

application of the unpolarized two-look technique for calibrating the digital correlator.

We note, however, that the correlator gains gtrv are significantly less than unity. This resid-

ual gain term cannot be identified using the unpolarized two-look technique because it does not

provide a stimulus with known and non-zero correlation. The polarimetric calibration technique

does provide this estimate. Sampler hysteresis and timing skew could account for ,,-10% of the

attenuation, with the remainder due possibly to phase-imbalances in image-rejection and low-pass

filters present in the radiometers. Subsequent polarimetric calibration experiments have shown that

this attenuation does not vary by more than a few percent over several months, allowing a constant

correlator gain coefficient to be included in the post-flight data processing routines.

The calibration exercise also yielded analog and digital total-power measurements that

were compared for consistency. One hundred twenty-five samples with TB = 80 to 290 K were

compared. The mean and standard deviation of the analog-digital measurement differences are

tabulated in Table 3. The mean of the differences #A-O are relatively small and range from -0.16

to -0.62 K. The constant negative bias across all four channels suggests a slight nonlinearity of

,_0.5 K over a ,_200 K range or ,_0.25% full scale. The standard deviations of the analog and

digital data are denoted aA and aD, respectively, and are equivalent to their respective ATrms's.

The standard deviation of the set of differenced brightnesses aA-D is close to the root-sum-squares

(V/a 2 + a_) of the individual standard deviations. This consistency is important because it indi-

cates that the variations in the differenced data are produced by the independant random variations

in the individual analog and digital data sets as opposed to some correlated, external, random flux-

ations affecting both analog and digital detectors. In all, the digital total-power radiometer tracks

the analog system quite well.

C Ocean Surface Emission Measurements

Perhaps the most important application of the third Stokes parameter is the measurement of ocean

surface wind vectors (e.g., [3]). Boundary layer winds drive the ocean surface creating gravity
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andcapillarywavesandoceanfoam,whichin turncauseazimuthaldependenciesin theupwelling

microwavebrightnesstemperatures[24,25]. Thisdependencehasbeenobservedusingbothsatel-

lite [26] andaircraftradiometers[27-29]in all fourcomponentsof theStokesvector.

In March1997,the PSR/D,alongwith a complementof passiveandactiveinstruments

(togetherknownastheOceanWindsImagingsuite,or OWI[28]),wasoperatedaboardtheNASA

WallopsFlight FacilityP-3Baircraftaspartof the LabradorSeaDeepConvectionExperiment.

Conically-scannedmicrowavebrightnessimageryof thewinddrivenoceansurfacewascollected

duringcoordinated flights over the R.V.Knorr. We discuss here PSR/D data collected on March 4,

1997 from 15:00-16:00 UTC. Centered over the Knorr, the flight pattern consisted of six straight

and level flight legs organized in three pairs, each 60 ° apart in heading. This "hex-cross" pattern

covered a triangular-shaped area _30 km along a side. Data collected during the pattern consisted

of 135 scans with 227 samples per scan at an elevation angle of 53.1 ° from nadir. Surface winds

were N14 m/s from ,,_260 ° as measured by both GPS dropsonde and Knorr wind sensors. The

ocean temperature measured at h=-3 m was 3°C and the air temperature at h = 23 m was -12°C,

thus, the air-sea temperature difference of 15°C indicated significant boundary layer instability.

The measured azimuthal brightness variations at 10.7, 18.7, and 37.0 GHz are plotted in

Figure 12. The 170 scans were averaged to accumulate a total of _2.7 seconds of integration time

for each of the 227 azimuthal points, thus corresponding to a ATrrns of_0.05 K. First- and second-

order harmonic amplitudes were determined via a least-squares fit to the mean azimuthal signa-

ture and are overlaid in the plot. For comparison, the 37 GHz Special Sensor Microwave/Imager

(SSM/I) global average wind direction harmonics from [26] are also plotted with a -2 K offset

for clarity. The plots show a distinct variation of ,,_2-4 K with strong first and second harmonic

dependence in the vertical and horizontal polarizations, respectively. For both polarizations, the

dominant harmonic amplitude is larger at the higher frequency. Furthermore, the measured verti-

cal and horizontal harmonic amplitudes at 37.0 GHz exhibit excellent agreement with the SSM/I

global average wind direction harmonics. Although slightly lower in amplitude, the PSR 10.7 GHz

wind direction harmonics are otherwise comparable to the 37 GHz SSM/I harmonics. Of particular
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interestis thestrong(,_1K amplitude)first harmonicpresentin thethirdStokesparametersigna-

ture.Thelargefirst harmoniccontentof thissignatureis indicativeof a strongwindward-leeward

asymmetryin theoceanwavestructure.Themeasurementsaresimilar to simulatedresultsob-

tainedusinganasymmetricwavegeometricalopticsmodel[24]. Thesemeasurementsandtheir

excellentagreementwithsatelliteandmodeldataverify theutility,calibrationtechnique,andper-

formancecapabilityof thedigitalpolarimetficradiometer.

VI Discussion

The design techniques and radiometer hardware described here demonstrate the utility and tech-

nological feasibility of the digital polarimetric radiometer for earth remote sensing applications.

Other polarimeter topologies such as the analog correlating polarimeter or the analog adding po-

larimeter are possibilities. Such systems, however, can exhibit polarization cross-coupling beyond

that caused by the antenna system that is not easily identifiable without sophisticated calibration

techniques. On the contrary, the digital polarimeter, if built to the proper design specifications, has

the distinct advantage of negligible Stokes parameter cross-coupling and affords in-flight periodic

calibration of all polarimetric channel parameters. Further, use of a three-level digital correlator

provides a simple means of calibrating both correlation offsets as well as total power measure-

ments.

To reiterate, the following design rules developed in Section III for the A/D converter pa-

rameters required to limit offset and gain perturbations are:

1. v_ < 0.01av_ to minimize correlator offsets rab[p:0 and _rab

2. minimize hysteresis, timing skew, and phase differences to maximize 9trtr

Adherence to these rules is highly desirable in order that the radiometer can be used to make

accurate measurements of the third and fourth Stokes parameters. However, if these design speci-

fications cannot be met, the radiometer may still be used pending regular calibration using a polari-

metric calibration standard or a similar method such as correlated noise injection to compensate
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for gainandoffsetvariations.

ThePSR/Dhardwaredemonstrationconfirmstheability to fabricate,operate, and calibrate

a digital polarimetric radiometer in the field and exemplifies its utility in earth remote sensing, par-

ticularly in the observation of ocean surface winds. As a follow-on to the PSR/D demonstration, an

implementation suitable for satellite deployment using lower-power space-qualified CMOS logic

at comparable sample rates is feasible and is currently under development [30]. An incidental

consequence of this work also exists in the application of digital correlators for synthetic aperture

interferometric radiometry (e.g., [31]). Such systems will be susceptible to the same effects of

nonlinearity, threshold asymmetry, timing skew, A/D converter hysteresis, and phase errors, all of

which have been discussed here.
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A Correlation Coefficient Inversion

The digital correlation coefficient can be computed by the following:

//rao=av.avb f(av_Oa,avnOb;p')+ f(avoOa,--avbOb;p')+

f(--a_.O_, avbOb; t_) + f(--avoO_, --CrvbOb;p') d d (70)

Symmetry of the Gaussian probability density function allows us to write:

r_b = 2av.a_ b f(a_oO_, a_bOb; p') + f(crv.O_, --a_bOb; p') dp' (71)

The function a_. a_b f(av, 0_, _VbOb;p) is recognized as the bivariate normal pdf [21, (26.3.1)]:

p(O_, Ob;P) _ 21rv_ 1 _ p2eXp [ O_ -- 2pOaOb + O_]2____) (72)

Rewriting the expression for r_b using the bivariate normal pdfyields:

tab : 2 p(O,_, Ob;pt) ___ p(Oa, --Oh; p') dp' (73)

The task at hand is to expand the integrand in a Taylor series and then integrate. The integrand of

the above is

I (d) = 2p(Oa, Oh;d) + 2p(Oa, --Oh; p') (74)

This can be expanded in a Taylor series in terms ofp':

I(P')=I(O)+I(1)(O)P'+_I(2)(O)P'2+II(a)(O)P'3+_.I(4)(O)p''+. 3! ... (75)

The algebra involving the derivatives is quite cumbersome and the computer algebra package

MapleV was used to evaluate the derivatives. These derivatives are

ff--_p(O_, Oh,p) = p(Oa, Ob,O)O_Ob (76)
p:0

02 Oh,p) o:0_-p(Oa, = p(Oa,Ob, O) (0_ -- 1) (0_ -- 1) (77)

03 Oh,p) p:0_-_-p(O_, :p(O_,Ob, O) (30. -- 0_) (30b--O_) (78)

04 Ob,p)o_P(Oa, =p(Oa, Ob,O) (3-- 60_ +04a)(3-- 60_ +0_) (79)
p:0
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The derivatives ofp(0a, --Ob, p) are easily found by substituting --Oh for Ob in the above. Because

the first and third derivatives are odd functions of 0_ and 0b, it is immediately seen that the Taylor

series terms with odd powers of p will cancel leaving only the even powers of p. Adding the

appropriate derivatives yields the following for the integrand:

[ 1I(p')=4p(O,_,Ob, O) l +-_(02--1) (O_-- l)p"

1 (3_60:+0,4) (3-60_ +0_)p r4] +O(p '_)

Finally, integrating the above yields:

r,o=-exp - 02+0 x
71"

1

p+ g (02 - 1) (0_, - 1) p3+

1 (3-60_+04 ) (3-60_+04 )pS] +O(pZ)120

Digital Radiometer SensitivityB

(80)

(81)

This appendix contains a derivation of the sensitivities of both the cross- and autocorrelating chan-

nels of the digital polarimeter. These sensitivities are assumed to be optimized with respect to the

A/D converter threshold level.

A Cross-correlator Sensitivity

The sensitivity of the third Stokes parameter cross-correlating channel is

ATv, rm8 - O'_"b
Or_n/ OTv

Using the chain rule, the derivative in the denominator is expanded:

Or_b Or_b Op

OTv Op OTv

The derivative Or_b/Op evaluated for small p can be computed using (15) and (16):

Or
lira = lirn a,.a.b [f(avaOa,_vbOb;p) + f(--O'vOa,OrvbOb;p)+
p---_O Op p-_O

f(a_oOa, --avbOb; p) + f(--a_ Oa, --OvbOb;p)]

= lim 2a_.a_b [f(a_oOa,a_bOb; p) + f(--a_oO,,Cr_bOb; p)]
p--+O

(82)

(83)

(84)

30



For the typical correlator, the channels are assumed to be balanced (i.e., a_o = _rvb = a) and the

threshold levels for both of the input A/D converters are assumed to be equal (i.e., 0,, = 0b = 0).

Thus, the above is simplified:

lim Or = lim 202 [f(aO, aO; p) + f(-aO, aO; p)]
p-->,O _ p--_0

= 2_r2[f(,70, aO;O) + f(-aO, aO;O)] (85)

= 4a2f(aO, aO; O)

Thc remaining derivative is obtained from (5):

Op 1
- (86)

OTv 2 v/Tv,_us Th,_y 8

In the numerator of (82), the standard deviation ofF ab is found by definition:

o ob= - (r%)2

Under the limiting case ofp --+ 0, the expected value of the digital covariance is zero:

(87)

lim(?o_) -- 0. (88)
p'-40

Thus, the standard deviation now is

lira
p--+O p--_O

(89)

Expanding the quantity (_b) results in:

lim(Fa2b) = lim h(va(nT))h(vb(nT)) h(va(mT))h(vb(mT
p--_O p--_O

n=l rn=l

/= h(va(nr)), h(vb(nr)), h(va(mT)), h(vb(mT)) (90)
_" n=l m=l

N N

= lim 1
p_O -_ E E (h(v,(nT)) . h(vb(nT)) . h(v_(mT)) . h(vb(mT)))

n=l m=l

Evaluating the limit allows the expected value within the double sum to be separated into two parts

because va and vb are statistically independent when p _ 0:

N N

• _--2 1
hm(r_b) = -- E E (h(v_,(nT))h(vc,(mT)))(h(vb(nT))h(%(mT)))p_o N 2

71=i m=-I

(91)
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Furthermore, because the samples are independent and identically distributed, all non-zero lag

products are zero; (h(v,_(nT))h(v,,(mT))) = 0 for n -¢ m. Thus, the above double summation

becomes

N
• ..-.2 1

hm(rab) -- N 2 Z (h2(v_'(nT))) (h2(vb(nT)))p-,'.O
n=l

= l(h2(va))(h2(vb))

= 1(_I>(_>.

Finally, by combining the previous results, the radiometric sensitivity is found:

(92)

lim ATu,rm,= V/(_) (s_)Tv'susTh'sus
.-+o 2o2:(o0,oo;o)4-_

(93)

The above expression can be written in terms of 0 by substituting in (7) and (11):

27re 02
lira ATu,,.ms -- [1 - _(0)] v/T,,,su_Th,_y_ (94)
p--_0

Computing the value of 0 for the minimum ATu,,.m_ can be done using Newton's method. The

optimal 0 is 0.61 with

2.47

A Tu, rms -- -_ v/Tv,sysTh,sys (95)

Comparing this to the continuous correlator:

2

zXZu,...= v_ _/T.,.T_,,__, (96)

B Total-power Sensitivity

The sensitivity of the total-power channel is found similarly:

O(S_a)/OTANT, a

Once again, the denominator is expanded using the chain rule:

OTANT, a O(a2va ) OTANT, a

(97)

(98)

32



Thefirsttermin theproductis thedifferentialrelationshipbetweentheinputvoltagevarianceand

theoutputof thetotal-powerchannelof thedigitalcorrelator.From(11),

- 20(a_----)1- •

Recalling(14),thevarianceof theinputvoltagesignalis

(99)

a 2 = RokBGc,(TANT, a + TREe,a)'t3a (1oo)

so that

O(Ov o)_
OTANT, a Ts_s,a

where Tsys,_ = TREC,,_ + TANT,_. Combining the two derivatives yields

O(_a) __ 1 (Vth,a _ exp [ l (V,h,a _2]

1 t 2

- G  ,ov, Ge

In the numerator of(102), the standard deviation of_ is found by definition:

(101)

(102)

V/((_-'2)2>_ (_>2 (103)

This is computed by first expanding the expected value of (s_)_:

(("g_)2) = ( [1N_= h2(v_,(nT))] [1N_= h2(v_,(mT))] )

= h_(v,_(nT))h2(v_,(mr (104)

n----1 rn=l

N N
1

= g--7 Z Z (h_(va(nT))h2(va(mT)))
n=l m=l

Because the samples of v,_ are independent and identically distributed, the above expected value

can be written:

(h2(v,_(nT))h2(va(mT))) = { (h2(v'_(nT)))(h4(v,_(nT)))(h2(v'_(mT)))
for Ft _ _

(lO5)
for n = rrt
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Conveniently,bythe definition ofh(v), h 4(v) = h2(v). Substituting these two cases into the double

summation yields

N N N
1 1

((_)2) = _ y_ <h2(vn(nT))) + -N_Z Z (h2(vn(nr))) <h_(v'_(mT)))
n=l n=l rn=l

nCrn

-_( )1 4 (1 N)(_) 2= iv sn_+ -

(106)

Thus, the variance of _ is

= _(sa) (i - (s"_))

= _1 [1 - • (On)] ff (On)

(107)

Forming the quotient (97) with the variance (107) and the derivative (102) produces

Tsyo_n

ATn,_.. - v_e_°_ v/,_(on)- 92 (on) v_On
(108)

The optimum value of 0,_ for best total power radiometer sensitivity is found by minimizing

ATn,,-m8 with respect to 0,_. Again, this can be done numerically. The sensitivity is minimized

at 0n = 1.58 such that

ATn,rm8 = 1.28 Tsy_'n (109)
v_

For operation of the polarization correlating radiometer, however, the value Of 0n is set to minimize

the noise of the Tu measurement. At the optimal point for Tu where 0n = 0.61, the sensitivity of

the total power channel is

ATn,,.,_ = 2.20 Tsy_'_ (110)
vW
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C Threshold Offset Effects

Perturbations in the threshold voltages will change the output of the digital correlator. With asym-

metric threshold levels, the digital correlation coefficient can be computed by the following:

//rab---- rabla=o+_v_rvb f(av_(O,+_,),crvb(Ob+db),p')+ f(av_(Oa+ra),av_(--Ob+_b),p')+

:(o_o(-oo +ra),av_(Ob+rb),d) + f(o_o(-Oo+6`'),o_,(-Ob+6_),p')ad. (111)

Using the definition for the bivariate normal pdf (72), the above becomes

//rab = rablo=O + P(O`'+6`',Ob+rb, P')+P(Oa+_a,--Ob+rb, P')+

p(--O a + 6`',0 b -at- 6b, Dt) q-p(--O a 4- 6`',--0 b 4- db, P')ap'. (112)

To determine the behavior ofr`'b with respect to 6`" and 6b, we need to express the integrand in a

three-dimensional power series in p, 6_ and db. The integrand is

I (p') = p(O`"+ _`',Ob+ _b,d) + p(oo+ 6`',--Ob+ _b,P')+

p(--O`"+ _`',Ob+ 6b,d) + p(--O`"+ _`',--Oh+ _b,d) (713)

and its expansion in p' is nearly identical to that in section A. The Taylor series expansion is

I (p') = I (O) + l(1) (O) p' + _I(2) (O) p'_ + _.l(3) (O) p'3 + _l(4) (O) pr' + . . .. (114)

What remains is to determine the two-dimensional Taylor series in 6,, and 6b of each of the terms of

the integrand. Throughout it is assumed that 6,, and _b are O(_) and the Taylor series are generally

truncated beyond O (_2).

The first term ofI (p') is

1 (0) = p(O`" + _5`',Ob+ 6b, O) + p(O_ + 6_, -Oh + _Sb,O) +

p(--O_ + 6`', Ob+ rb, O) + p(--O_ 4- 6_, --Ob+ rb, O) (115)

There are four instances of a term with the form p(:c 4- a, y 4- b, 0), where z = -I-0`', y = ±0b,

a = 6`', b = 6b. The two-dimensional Taylor series about a: and !1 will be applied to the above.
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Theexpressionp(x + a, y + b, O) is the product of two standard normal pdfs: p(z + a, y +

b, O) = Z(x + a)Z(y + b), where Z(x) = 1 _-x2/2_c is the standard normal curve [21, (26.2.1)].

The Taylor series of this product is

p(x -_ a, y -]y b, O) _-- Z(x)Z(y) --_ Z(1)(x)Z(y)a + Z(x)Z(l)(y)b +

1

2-_ [ZI2)(xlZ(Yla2 + 2Z(t)(x)ZIX)(y)ab+ Z(xlZ(2)(ylb_] + ' (ll6)

The derivatives Z ('_)(x) of the standard normal pdf can be expressed in terms of Hermite polyno-

mials [21, (26.2.32)]:

z("_(x) = (-1)-"2-"/2Z(x)H.(_2), (117)

where the first three Hermite polynomials are Ho(x) = 1, H1 (x) = 2x, and H_(x) = 4x 2 - 2. For

example, the second derivative of Z(x) is

Z(_)(x) = (-1)-22-_/2Z(x)H2(_2)

= z(x)(_- 1)

Substituting these results into (115), the first term of the integrand is

I (0) = Z(Oo)Z(Ob) + Z(1)(Oo)Z(Ob)_a + Z(Oo)ZI_)(Ob)rb +

L [Z(2)(Oa)Z(Ob)(_2a + 2Z(1)(Oa)Z(1)(Ob)¢_af_b -3r Z(Oa)Z(2)(Ob)f_ 2] +
2!

z(oo)z(ob) + z(')(oo)z(ob)_a - Z(O,,)Z(1)(Ob)rb+

1 [z_2_(o_)z(o_)__2z_(oo)z_,_(o_)_._ + z(oo)z_2_(ob)_]+
2_

z(oo)z(o_)- zC'_(oo)z(o_)_o+ z(oo)z_'_(o_)6_+

z(o_)z(od - #'_(oo)z(ob)_- z(o.)z(X)(o_)_b+

L [z_(oo)z(o_)_ + 2z(l_(oo)z(,_(o_)_o_b+ z(oo)z(_(o_)g] +
2! "'"

=4p(z,y,O) 1-_[(1-o_)e_+0-o_)_] +o(d _)

(_18)

(119)
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Thesecondtermin theTaylorseriesof I (if) is

0 6b, p) p=o 0 6b, p) p=o1 (1) (0)pt---_ _-'_pp(O a + 66,0 b -'_ "+ _pp(O a + 66,--0 b + "+

O-_p(--Oa +6a,Ob +6b, P) p:o+ _P(--Oa +6a,--Ob +6b, P) o:ol P'

The first partial derivative with respect to p, evaluated at zero, of the bivariate normal pdf is

p(O.,Oh,p) = p(O.,Oh,O)O°Ob
p-=O

Thus,

= OoZ(O°)ObZ(Ob)

(120)

(121)

x(1_(o) = (o. + 6.)z(o. + 6.)(oh+ 6_)z(o_+ 6_)+

(o°+ 6.)z(o. + 6.)(-o_ + 6b)Z(-Ob+ 6b)+

(--Oc, "q- 6a)Z(-Oa "1- 6a)(Ob "J- 6b)Z(Ob -+- 6b) -J-

(122)

(-o. + 6o)z(-o. + 6_)(--Ob+ 6b)Z(--Ob+ 6b)

= [(o.+ 6o)z(o°+ 6.) + (-o. + 6o)z(-oo+ 6,,)]x

[(0b+ 6b)Z(Ob+ 6b)+ (--0b+ 6b)Z(--Ob+ 6b)]

Next, consider the expression (0,_ + 6,_)Z(O,_ + 6,_) + (-0,_ + 6a)Z(-O¢, + 6,_) by expanding the

standard normal pdfs in one dimensional Taylor series:

(O°, + 6'_) [Z(O°') + ZO)(O_')6c' + _Z(_)(Oo,)6_, + ""] +.

(-O,_ + 6_,) [Z(-O,_) + ZO)(-O,_)6,_ + _Z(2)(-O,_)6_ + ...]

+ 6or Z(Oa) -Jr- Z(1)(0a)6ot -J- 21 ......

= z(oo)_o(1- 2o_)+ o (_)
(123)
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Finally,substitutingtheaboveseriesintothea and b terms of (122) yields the following:

i(1) (0) = 25a(_bp(Oa, Ob, O ) (1 - 20_) (1 - 20_) + 0(53) (124)

The third term in the series expansion of I (p') contains

I (_) (0) = [(0o + 6o)_ - 1] Z(Oo + 6°) [(0_ + _)_ - 1] Z(O_ + 6_) +

[(0o + 6°) 2 - 1] z(oo + 6°) [(--Ob + 5b)2 - 1] Z(--Ob + 5b) +

[(-0° + 5o) 2 - 1] z(-Oo + 5°) [(0_ + 5b)2 - 1] z(o_ + 5b) +
(125)

[(-oo+ 5°)2- 1]z(-oo + 5°)E(-ob+ 5_)_- 1]z(-o_ + 5_)

= [(Oa2 + 20°5° + 6_ - 1) Z(O° + 5°) + (02a-- 20°5° + 5_ - 1) Z(-O° + 5°)] ×

[(0_ + 20b6b + _ -- 1) Z(Ob + 6b) + (0_ -- 20bSb + 6_ -- 1) Z(--Ob + 6b)]

Consider the following expression by expanding Z in a power series:

(0_ + 20aS° + 5_ - 1) Z(Oa + 5a) + (0_ - 20a5c, + 5_ - 1) Z(-Oa + 5c_)

= (0: + 20'_5'_ +5:-1) [Z(O'_) + ZO)(Oa)5'_ + _Z(2)(O'_)5: +'"] +.

(o:- 2oo5o+,_:-1) [z(-oo) + z(1)(-oo)6o+ _.z_2)(-oo)5:+...]
(126)

=2 (0_+5_-1)[Z(O,_) + _Z(2)(0,_)5:+ ...] + 40,_6,_ [Z(')(O,_)5,_ + ...]+

=2 (0_ + 6: -1) [Z(O_) + _Z(O,_). (0_ -1) 6_] + 80,_5,_O,_Z(Oa)5,_ + . . .

= Z(Oa)((02a- 1) 54 + (60_ +04 + 3) 52a+ 202a- 2) +...

Substituting the above result into (125) produces,

1(2)(0) =p(O,_,Ob, O)[(60_ +04 + 3) 5_ + 20_-- 2] [(60_ +04 +3) 5_ + 20_-- 2] +0(5')

(127)

Combining and integrating the first three terms of the integrand (119), (124), and (127)
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resultsin

r.b=r.b]o=o+4P(O_,Ob, O) 1-- _ [(1--01) _a + -- +

_p(Oo, o_,o)0- 20_)(1- 20_)0_+
1
5p(0o,0_,o/((60_+ o_+ a)_ + 20._- 2)((60_+ o:+ a)_ + 20_- 2)p_+

o (p',,__)
1

----rab{,=o+4p(Oa, Ob,O) [P+-_ (O:--l) (O_-- l) p3] +

[ 14p(Oa,Ob,O) -_ [(1 - 02) di_ + (1 - 02) fi_] p+

_eo_(1- 2o._)(1- 2oI)p_+

_16 [(60_ + O: + 3) (1 -- 0_) _a2 + (1 -- 01) (60_ + Ob4 + 3) _] p3] +

o (p',__)
(128)

There are two different power series in p that can be identified in the above. These are the ideal

relationship between p and r and an error series caused by nonzero threshold offsets 6a and _b:

r_b = r_blp=o+ r.blzo=6_:o+ -exp - (Oa2 + 0 x
71"

[-_ [( 1 --0a 2) 62+ (1-05)'_] p+ _6a'b (1-202)(1--20_)p2+ (129)

-1[(602 + 04 + 3) (1 - 0_) 6_ + (1 - 0_) (60_ + 0_, + 3) 6_]p 3] + O (p,, 33)
6 J
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Table1: Digital correlatingpolarimetersystemparametersfoundusinghotandambientunpolar-
izedcalibrationtargets.

Table 2: Gain and offset terms for the 10.7 and 37.0 GHz digital polarimeters as measured using

the polarized calibration standard.

Table 3: Comparison of digital and analog total-power radiometer measurements.

Figure 1: Block diagram of a typical digital polarimetric radiometer. This direct correlating po-

larimeter, utilizes a dual polarized antenna, dual channel superheterodyne receiver, and a 3-level

digital correlator. The IF signals are also coupled to traditional square law detectors and video

amplifiers.

Figure 2: Ideal transfer function of three-level A/D converter.

Figure 3: Digital logic for the multiplier and squaring operations. The values of the boolean input

variables A +, A-, B +, and B- are the outputs of the 3-level A/D converters (see above table). The

outputs CA and CB are the count enable signals for the total-power accumulators and C+ and C_

are the count enable signals for the positive- and negative-correlation accumulators.

Figure 4: The digital variance as a function of input RMS voltage at a fixed threshold level. The

optimal threshold level for correlation 0,_ = 0.61 occurs at a_/vth_ = 1.64 (e) and for total power

measurement (+) 0c, = 1.58 occurs at a_/Vth a = 0.633.

Figure 5: The digital covariance rab versus the input correlation coefficient p for 0 = 0.30, 0.61,

1.0, and 1.58.

Figure 6: Transfer function of three-level A/D converter with threshold offset yr.

Figure 7: Transfer function of three-level A/D converter with hysteresis magnitude Vhu8.

Figure 8: The reduction in the digital correlator output as a function of hysteresis amplitude. The

results of the Monte-Carlo model (solid line with open circles) shows that the statistical model [18]

(solid line) significantly under estimates the effect.

Figure 9: (a) Polarimetric Scanning Radiometer (PSR) installed in the bomb-bay of the NASA Wal-

lops P-3B Orion (N426A). (b) PSR scanhead with antenna lenses visible. The dual-band 10.7/37.0

GHz antenna is indicated.

Figure 10: Digital correlator module for Polarimetric Scanning Radiometer (PSR/D). The correla-

tor is constructed using ECL discrete logic on a six-layer microwave circuit board. This module

contains two complete correlators (including total power channels) on one board.
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Figure11"Plotsof(a) 37.0GHzand(b) 10.7GHzpolarizedtargetmeasurementsTu(c_) (denoted

by crosses) and the observation matrix. The columns of the observation matrix are plotted as

follows: Tv (o_) (dash-dot), Th(a) (dotted), and Ttr(o_) (solid).

Figure 12: PSR azimuthal harmonics exhibiting wind direction dependence of the first three Stokes

parameters at 10.7, 18.7, and 37.0 GHz. Data for Tu at 18.7 GHz was unavailable. The wind speed

was 10 ms -1 -/-0.6 ms -1 from 1500 to 1600 UTC on March 9, 1997. The solid lines represent the

reconstructed second-order harmonic expansions and the dashed lines are the _ltrT- error curves

for 170 scans. Individual points indicate mean measured brightness deviations. The 37.0 GHz

SSM/I global average wind direction harmonics, denoted by solid lines, are shifted by -2 K for

clarity.
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Parameter X-band (10.6-10.8 GHz) Ka-band (36-38 GHz)

_/TREc,,TREc,h (K)

Receiver type

ATv, rms:Theory (K)

ATv, rm_ :Meas'd (K)

1394 939

0.020 0.078

0.0024 0.0058

LNA/SSB mixer/DSB, two subbands

0.51 0.35

0.66 0.36

t



guy

_uh

_uu

_u

X-band (10.7 GHz)

-2.32 × 10 -4

3.90 × 10 -4

0.288

-0.047

Ka-band (37.0 GHz)

1.01 × 10 -3

4.94 × 10 -4

0.764

-0.444
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X-band (10.6-10.8 GHz) Ka-band (36-38 GHz)

v-pol h-pol v-pol h-pol

-0.16 -0.56
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0.46 0.64
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0.84 1.2
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